Theory of Complex Variables - MA 209
 Problem Sheet-2

1. Write the given complex number in polar form first using an argument $\theta \neq \operatorname{Arg}(z)$ and then using $\theta=$ $\operatorname{Arg}(z)$.
(a) 2
(c) $5-5 i$
(b) $-3 i$
(d) $\frac{12}{\sqrt{3}+i}$
2. Use a calculator to write the given complex number in polar form first using an argument $\theta \neq \operatorname{Arg}(z)$ and then using $\theta=\operatorname{Arg}(z)$
(a) $-\sqrt{2}+\sqrt{7} i$
(b) $-12-5 i$
3. Find $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$.Write the number in the form of $a+i b$
(a) $z_{1}=\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right)$
(b) $z_{2}=\sqrt{3}\left(\cos \left(\frac{\pi}{12}\right)+i \sin \left(\frac{\pi}{12}\right)\right)$
4. Write each complex number in polar form.Finally write the polar form in the form $a+i b$
(a) $(3-3 i)(5+5 \sqrt{3} i)$
(b) $\frac{\sqrt{2}+\sqrt{6} i}{-1+\sqrt{3} i}$
5. Compute the indicated powers.
(a) $(2-2 i)^{5}$
(b) $\left(\sqrt{3}\left(\cos \left(\frac{2 \pi}{9}\right)+i \sin \left(\frac{2 \pi}{9}\right)\right)^{6}\right.$
6. Write the complex number in polar form and then in the form of $a+i b$
$\frac{\left[8\left(\cos \left(\frac{3 \pi}{8}\right)+i \sin \left(\frac{3 \pi}{i}\right)\right)\right]^{3}}{\left[2\left(\cos \left(\frac{\pi}{16}\right)+i \sin \left(\frac{\pi}{16}\right)\right)\right]^{6}}$
7. Use De Moivre's formula with $n=2$ to find trigonometric identities for $\cos 2 \theta$ and $\sin 2 \theta$
8. Use De Moivre's formula with $n=3$ to find trigonometric identities for $\cos 3 \theta$ and $\sin 3 \theta$
9. Find a positive integer n for which the equality holds.
$\left(\frac{\sqrt{3} i}{2}+\frac{1}{2} i\right)^{n}=-1$
10. Suppose that $z=r(\cos \theta+i \sin \theta)$. Describe geometrically the effect of multiplying z by a complex number of the form $z_{1}=\cos \alpha+i \sin \alpha$ when $\alpha>0$ and when $\alpha<0$.
11. Suppose $z=\cos \theta+i \sin \theta$. If n is an integer, evaluate $z^{n}+\bar{z}^{n}$ and $z^{n}-\bar{z}^{n}$.
12. Write an equation that relates $\arg (z)$ to $\arg (1 / z), z \neq 0$.
13. Are there any special cases in which $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$? Proveyour assertions.
14. How are the complex numbers z_{1} and z_{2} related if $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$?
15. Describe the set of points z in the complex plane that satisfy $\arg (z)=\pi / 4$.
16. Suppose z_{1}, z_{2}, and $z_{1} z_{2}$ are complex numbers in the first quadrant and that the points $z=0, z=1, z_{1}, z_{2}$, and $z_{1} z_{2}$ are labeled $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, and D, respectively. Discuss how the triangles OAB and OCD are related.
17. Suppose $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. If $z_{1}=z_{2}$, then how are r_{1} and r_{2} related? How are θ_{1} and θ_{2} related?
18. Suppose z_{1} is in the first quadrant. For each z_{2}, discuss the quadrant in which $z_{1} z_{2}$ could be located.
(a) $z_{2}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$
(b) $z_{2}=-1$
19. Suppose z_{1}, z_{2}, z_{3}, and z_{4} are four distinct complex numbers. Interpret geometrically: $\arg \left(\frac{z_{1}-z_{2}}{z_{1}-z_{2}}\right)=\frac{\pi}{2}$
20. For the following problems compute all roots. Give the principal nth root in each case. Sketch the roots $w_{0}, w_{1}, \ldots, w_{n-1}$ on an appropriate circle centered at the origin.
(a) $(8)^{\frac{1}{3}}$
(d) $(-1-\sqrt{3} i)^{\frac{1}{4}}$
(b) $(-125)^{\frac{1}{3}}$
(c) $(-1+i)^{\frac{1}{3}}$
(e) $\left(\frac{1+i}{\sqrt{3}+i}\right)^{(1 / 6)}$
21. Use the fact that $8 i=(2+2 i)^{2}$ to find all solutions of the equation $z^{2}-8 z+16=8 i$.
22. Show that the n nth roots of unity are given by
(1) ${ }^{(1 / n)}=\cos \left(\frac{2 k \pi}{n}\right)+i \sin \left(\frac{2 k \pi}{n}\right) k=0,1,2, \ldots, n-1$
(a)Find n nth roots of unity for $n=3, n=4, n=5$
(b)Carefully plot the roots of unity found in part (b).Sketch the regular polygons formed with the roots as vertices.
23. Suppose ω is a cube root of unity corresponding to $\mathrm{k}=1$ in the last problem.
(a) How are ω and ω^{2} related?
(b)Verify by direct computation that $1+\omega+\omega^{2}=0$.
(c) Explain how the result in part (b) follows from the basic definition that ω is a cube root of 1 , that is, $\omega^{3}=1$. [Hint: Factor]
24. For a fixed n , if we take $\mathrm{k}=1$ in Problem 22 , we obtain the $\operatorname{root} \omega_{n}=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$
Explain why the n nth roots of unity can then be written $1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1}$
25. Consider the equation $(z+2)^{n}+z^{n}=0$, where n is a positive integer. By any means, solve the equation for z when $\mathrm{n}=1$. When $\mathrm{n}=2$.
26. Consider the equation in Problem 25.
(a) In the complex plane, determine the location of all solutions z when $\mathrm{n}=5$. [Hint: Write the equation in the form $[(z+2) /(-z)]^{5}=1$ and use part (a) of Problem 22.]
(b) Reexamine the solutions of the equation in Problem 25 for $\mathrm{n}=1$ and $\mathrm{n}=2$.
27. Let n be a fixed natural number.Put $\omega_{n}=\operatorname{cis}\left(\frac{2 \pi}{n}\right)$. Show that $1+\omega_{n}+\omega_{n}^{2}+\omega_{n}^{3}++\omega_{n}^{n-1}=0$. [Hint: Multiply the sum $1+\omega_{n}+\omega_{n}^{2}+\omega_{n}^{3}++\omega_{n}^{n-1}$ by $\omega_{n}-1$.]
28. Suppose n denotes a nonnegative integer. Determine the values of n such that $z^{n}=1$ possesses only real solutions. Defend your answer with sound mathematics.
29. Discuss: A real number can have a complex nth root. Can a nonreal complex number have a real nth root?
30. Suppose w is located in the first quadrant and is a cube root of a complex number z . Can there exist a second cube root of z located in the first quadrant? Defend your answer with sound mathematics.
31. Suppose z is a complex number that possesses a fourth root w that is neither real nor pure imaginary. Explain why the remaining fourth roots are neither real nor pure imaginary.
