nitksam@gmail.com

Theory of Complex Variables - MA 209 Problem Sheet - 2

1. Write the given complex number in polar form first using an argument $\theta \neq Arg(z)$ and then using $\theta = Arg(z)$.

(a) 2 (c)
$$5-5$$

- (b) -3i (d) $\frac{12}{\sqrt{3}+i}$
- 2. Use a calculator to write the given complex number in polar form first using an argument $\theta \neq Arg(z)$ and then using $\theta = Arg(z)$
 - (a) $-\sqrt{2} + \sqrt{7}i$ (b) -12 5i
- 3. Find $z_1 z_2$ and $\frac{z_1}{z_2}$. Write the number in the form of a + ib

(a)
$$z_1 = \sqrt{2}(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))$$
 (b) $z_2 = \sqrt{3}(\cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12}))$

- 4. Write each complex number in polar form. Finally write the polar form in the form a + ib
 - (a) $(3-3i)(5+5\sqrt{3}i)$ (b) $\frac{\sqrt{2}+\sqrt{6}i}{-1+\sqrt{3}i}$
- 5. Compute the indicated powers.

(a)
$$(2-2i)^5$$
 (b) $(\sqrt{3}(\cos(\frac{2\pi}{9})+i\sin(\frac{2\pi}{9}))^6$

- 6. Write the complex number in polar form and then in the form of a + ib $\frac{[8(\cos(\frac{3\pi}{8}) + i\sin(\frac{3\pi}{8}))]^3}{[2(\cos(\frac{\pi}{16}) + i\sin(\frac{\pi}{16}))]^6}$
- 7. Use De Moivre's formula with n = 2 to find trigonometric identities for $\cos 2\theta$ and $\sin 2\theta$
- 8. Use De Moivre's formula with n = 3 to find trigonometric identities for $\cos 3\theta$ and $\sin 3\theta$
- 9. Find a positive integer *n* for which the equality holds. $(\frac{\sqrt{3}i}{2} + \frac{1}{2}i)^n = -1$
- 10. Suppose that $z = r(\cos\theta + i\sin\theta)$. Describe geometrically the effect of multiplying z by a complex number of the form $z_1 = \cos\alpha + i\sin\alpha$ when $\alpha > 0$ and when $\alpha < 0$.
- 11. Suppose $z = cos\theta + isin\theta$. If n is an integer, evaluate $z^n + \bar{z}^n$ and $z^n \bar{z}^n$.
- 12. Write an equation that relates arg(z) to arg(1/z), $z \neq 0$.
- 13. Are there any special cases in which $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$? Proveyour assertions.
- 14. How are the complex numbers z_1 and z_2 related if $arg(z_1) = arg(z_2)$?
- 15. Describe the set of points z in the complex plane that satisfy $arg(z) = \pi/4$.

- 16. Suppose z_1, z_2 , and z_1z_2 are complex numbers in the first quadrant and that the points $z = 0, z = 1, z_1, z_2$, and z_1z_2 are labeled O, A, B, C, and D, respectively. Discuss how the triangles OAB and OCD are related.
- 17. Suppose $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$. If $z_1 = z_2$, then how are r_1 and r_2 related? How are θ_1 and θ_2 related?
- 18. Suppose z_1 is in the first quadrant. For each z_2 , discuss the quadrant in which z_1z_2 could be located.

(a)
$$z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 (b) $z_2 = -1$

- 19. Suppose z_1, z_2, z_3 , and z_4 are four distinct complex numbers. Interpret geometrically: $\arg(\frac{z_1-z_2}{z_1-z_2}) = \frac{\pi}{2}$
- 20. For the following problems compute all roots. Give the principal nth root in each case. Sketch the roots $w_0, w_1, ..., w_{n-1}$ on an appropriate circle centered at the origin.
 - (a) $(8)^{\frac{1}{3}}$ (d) $(-1-\sqrt{3}i)^{\frac{1}{4}}$
 - (b) $(-125)^{\frac{1}{3}}$

(c)
$$(-1+i)^{\frac{1}{3}}$$
 (e) $(\frac{1+i}{\sqrt{3}+i})^{(1/6)}$

21. Use the fact that $8i = (2 + 2i)^2$ to find all solutions of the equation $z^2 - 8z + 16 = 8i$.

22. Show that the n nth roots of unity are given by $(1)^{(1/n)} = \cos(\frac{2k\pi}{n}) + i\sin(\frac{2k\pi}{n}) k = 0, 1, 2, ..., n - 1$

(a)Find n nth roots of unity for n = 3, n = 4, n = 5

(b)Carefully plot the roots of unity found in part (b).Sketch the regular polygons formed with the roots as vertices.

- 23. Suppose ω is a cube root of unity corresponding to k = 1 in the last problem.
 - (a) How are ω and ω^2 related?
 - (b)Verify by direct computation that $1 + \omega + \omega^2 = 0$.

(c) Explain how the result in part (b) follows from the basic definition that ω is a cube root of 1, that is, $\omega^3 = 1$. [Hint: Factor]

- 24. For a fixed n, if we take k = 1 in Problem 22, we obtain the root $\omega_n = \cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$ Explain why the n nth roots of unity can then be written 1, ω_n , ω_n^2 , ..., ω_n^{n-1}
- 25. Consider the equation $(z + 2)^n + z^n = 0$, where n is a positive integer. By any means, solve the equation for z when n = 1. When n = 2.
- 26. Consider the equation in Problem 25.
 (a) In the complex plane, determine the location of all solutions z when n = 5. [Hint: Write the equation in the form [(z+2)/(-z)]⁵ = 1 and use part (a) of Problem 22.]
 (b) Reexamine the solutions of the equation in Problem 25 for n = 1 and n = 2.
- 27. Let n be a fixed natural number. Put $\omega_n = cis(\frac{2\pi}{n})$. Show that $1 + \omega_n + \omega_n^2 + \omega_n^3 + \omega_n^{n-1} = 0$. [Hint: Multiply the sum $1 + \omega_n + \omega_n^2 + \omega_n^3 + \omega_n^{n-1}$ by $\omega_n 1$.]
- 28. Suppose n denotes a nonnegative integer. Determine the values of n such that $z^n = 1$ possesses only real solutions. Defend your answer with sound mathematics.
- 29. Discuss: A real number can have a complex nth root. Can a nonreal complex number have a real nth root?
- 30. Suppose w is located in the first quadrant and is a cube root of a complex number z. Can there exist a second cube root of z located in the first quadrant? Defend your answer with sound mathematics.
- 31. Suppose z is a complex number that possesses a fourth root w that is neither real nor pure imaginary. Explain why the remaining fourth roots are neither real nor pure imaginary.
